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The neural mechanisms underlying the ability of human listeners to recognize speech in the
presence of background noise are still imperfectly understood. However, there is mounting evidence
that the medial olivocochlear system plays an important role, via efferents that exert a suppressive
effect on the response of the basilar membrane. The current paper presents a computer modeling
study that investigates the possible role of this activity on speech intelligibility in noise. A model of
auditory efferent processing [Ferry, R. T., and Meddis, R. (2007). J. Acoust. Soc. Am. 122, 3519—
3526] is used to provide acoustic features for a statistical automatic speech recognition system, thus
allowing the effects of efferent activity on speech intelligibility to be quantified. Performance of the
“basic” model (without efferent activity) on a connected digit recognition task is good when the
speech is uncorrupted by noise but falls when noise is present. However, recognition performance
is much improved when efferent activity is applied. Furthermore, optimal performance is obtained
when the amount of efferent activity is proportional to the noise level. The results obtained are
consistent with the suggestion that efferent suppression causes a “release from adaptation” in the

auditory-nerve response to noisy speech, which enhances its intelligibility.
© 2010 Acoustical Society of America. [DOI: 10.1121/1.3273893]

PACS number(s): 43.64.Bt, 43.71.Rt [WPS]

I. INTRODUCTION

The detection of communication sounds against a back-
ground of environmental noise is a fundamental problem that
affects many animal species. Among humans, this problem is
particularly acute for listeners with impaired hearing, who
frequently complain of difficulties in hearing speech in noisy
places such as offices, shops, bars, and restaurants. An un-
derstanding of the mechanisms that underlie the ability of
normal human listeners to recognize speech in the presence
of background noise is therefore of considerable theoretical
interest, and has an important practical application in the
development of aids for the hearing impaired.

Our understanding of hearing is based mainly on our
knowledge of the afferent system, where speech sounds are
processed and passed through the auditory nervous system in
the direction of the cerebral cortex. However, there have
been numerous recent suggestions that the efferent system
may make an important contribution (see Guinan, 1996,
2006 for reviews). The efferent system consists of nerve fi-
bers whose direction of information flow appears to be away
from the cortex. The most peripheral part of the auditory
efferent system consists of fibers in the auditory nerve that
project from the brainstem to the cochlea itself. It is now
generally agreed that one component, the medial olivoco-
chlear (MOC) system, indirectly exerts a suppressive influ-
ence on the response of the basilar membrane (BM) to
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sounds (Dallos, 1992). This has the effect of shifting the
auditory-nerve (AN) rate/level function toward higher sound
levels, and may be a way of extending the dynamic range of
the auditory system. This effect has been recorded in small
mammals at the level of the basilar membrane (Dolan et al.,
1997; Russell and Murugasu, 1997; Cooper and Guinan,
2006), the auditory nerve (Wiederhold and Kiang, 1970;
Guinan and Stankovic, 1996), and the compound action po-
tential (Winslow and Sachs, 1988; Dolan and Nuttall, 1988).

In addition, it has been suggested that the efferent sys-
tem confers robustness to noise. For example, Dolan and
Nuttall (1988) suggested that the activity of the efferent sys-
tem may increase the detectability of tones in noise. They
demonstrated that the compound action potential (CAP) re-
sponse to a tone in noise was enhanced when the crossed
olivocochlear bundle (OCB) was electrically stimulated. The
mechanism responsible for this effect is complex, but is
likely to involve adaptation. In prolonged background noise,
the auditory nerve response becomes adapted and less re-
sponsive to new sounds. The efferent system has the poten-
tial to reduce the response to the continuous noise, reduce
adaptation, and, therefore, enhance the response to a new
sound presented in that background. Liberman and Guinan
(1998) suggested that when the noise is continuous but the
signal is transient, the MOC reflex acts to minimize the re-
sponse to long-lasting stimuli while maximizing the response
to novel stimuli. Other effects related to level-dependent
compression may also be involved (Russell and Murugasu,
1997).
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Relatively few studies give direct support to the idea that
the efferent system contributes to the intelligibility of speech
in noise. May and McQuone (1995) and Hienz et al. (1998)
found that severing the olivocochlear bundle in cats reduced
performance in tasks involving formant discrimination or in-
tensity discrimination of tones in noise. Dewson (1968)
showed that MOC lesions impair the ability of monkeys to
discriminate vowel sounds when presented in noise, but have
no effect on discrimination in silence. Giraud et al. (1997),
using human subjects, found that contralateral noise im-
proved speech-in-noise intelligibility in normal ears. They
suggested that the crossed olivocochlear efferents were re-
sponsible. Kumar and Vanaja (2004) also found that con-
tralateral acoustic stimulation improved speech intelligibility
in noise when noise was presented to the contralateral ear,
for ipsilateral signal-to-noise ratios (SNRs) of +10 and
+15 dB. They showed that the same contralateral noise could
suppress ipsilateral otoacoustic emissions, suggesting a role
for efferent fibers. Kim er al. (2006) investigated the rela-
tionship between MOC efferent processing and speech intel-
ligibility in noise for normal hearing listeners of different
ages, using distortion product otoacoustic emissions
(DPOAES) as an index of efferent activity. Their findings
suggest that the decline in ability to understand speech in
noise with increasing age is associated with a corresponding
decline in the function of the MOC efferent system.

It should be noted that not all of the evidence supports a
role for the efferent system in improving the intelligibility of
noisy speech. Wagner er al. (2008) found no correlation be-
tween efferent activity and speech intelligibility in noise, as
judged by a speech reception threshold (SRT) test and mea-
surements of contralateral suppression of DPOAEs. Other
studies suggest a relatively minor role for the OCB in hear-
ing; for example, Scharf et al. (1997) studied patients with
sectioned crossed olivocochlear bundles and found that they
had no audiological impairment. However, one of the few
changes noted in these patients concerned the absence of an
attention effect seen in normal listeners. In this effect, normal
listeners had raised thresholds for stimulus tones at frequen-
cies that were unexpected (i.e., had a low probability of oc-
currence). In their patient group, by contrast, Scharf e al.
(1997) found no increase in threshold for unexpected stimuli.
It is possible that efferent fibers were suppressing the BM
response in regions most sensitive to the low probability fre-
quencies in normal listeners. If this is the case, the patient
group would be less likely to show this “attention” effect.

One way of critically assessing the claims made for the
role of the efferent system in improving speech intelligibility
in noise is to build and evaluate a computer model. Ghitza
and co-workers (Ghitza et al., 2007; Ghitza, 2007; Messing
et al., 2009) proposed a computer model of auditory efferent
processing, and evaluated it on a speech recognition task.
They described a closed-loop model of the auditory periph-
ery in which the mechanical filtering properties of the co-
chlea are regulated by feedback based on short-term mea-
surements of the dynamic range of simulated AN fibers.
Ghitza et al. (Ghitza et al., 2007; Ghitza, 2007) modeled
consonant-confusions made by listeners in noise, for a di-
phone discrimination task that used synthetic speech stimuli
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with restricted phonemic variation. This was achieved by
coupling the auditory model to a simple speech recognizer,
which performed template-matching based on a minimum
mean-squares error distance metric.

The current study also investigates the possible effect of
efferent activity on speech intelligibility by using a computer
model of auditory efferent processing as the “front-end”
acoustic processor for an automatic speech recognition
(ASR) system. Our approach differs from that of Ghitza
et al. (2007) in several important respects. First, we use the
auditory model of Ferry and Meddis (2007) which is open-
loop (i.e., the amount of efferent suppression is fixed directly
by the experimenter). This allows a systematic study of the
effect of different amounts of suppression in order to identify
the optimum level of efferent activity as a function of the
level of the background noise. A similar analysis is not pos-
sible with Ghitza et al.’s (2007) model because of its closed-
loop design [it should be noted, however, that the model of
Ferry and Meddis (2007) is greatly simplified because the
efferent system operates as a closed-loop system in practice].

Second, the current study uses a conventional statistical
ASR system that is trained on a large corpus of naturalistic
speech (spoken digits from the TIDigits speech corpus;
Pearce and Hirsch, 2000). This contrasts with Ghitza et al.’s
(2007) study, which used a simple template-matching recog-
nizer and synthetic speech. Ghitza et al.’s (2007) choice of
speech material and recognizer was made in order to ensure
that errors due to the recognizer were minimized, so that the
consonant-confusions that occurred were mainly due to the
auditory model. A limitation of our approach is that we are
unable to discriminate errors due to the “back end” recog-
nizer from those that originate in the front end auditory
model. However, our approach also has advantages; the
speech material used is naturalistic and therefore more rep-
resentative of the phonemic variation that is typically en-
countered in speech. Also, the statistical speech recognizer
that we use is typical of modern ASR systems; the results of
the current study therefore indicate whether, in principle, an
auditory model that incorporates efferent processing could
serve as a noise-robust front-end for a practical ASR system.

Finally, we note that Ghitza et al. (2007) used a simplis-
tic model of neuromechanical transduction by inner hair cells
and made no reference to the role of adaptation in explaining
their findings. The model of Ferry and Meddis (2007) used
here incorporates a detailed model of adaptation (and recov-
ery from adaptation) at the auditory nerve synapse, and this
will be shown to be an important factor in explaining the
effect of efferent suppression.

It is important to stress that the proposed model is in-
tended purely to illustrate the principle benefits of efferent
stimulation when recognizing speech in noisy backgrounds.
It is not proposed as a working model of the auditory efferent
system for general use. Such a model would need to operate
on a closed-loop basis such as that of Ghitza et al. (Ghitza
et al., 2007; Ghitza, 2007) and take into account the consid-
erable body of knowledge recently accumulated concerning
the time constants of efferent activation and the different
amounts of inhibition observed across frequency. This will
be the focus of future work. However, the results of Liber-
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man (1988, Fig. 12C) suggested that noise, when it is
present, is the dominant influence on the amount of efferent
activity compared to the influence of accompanying pure
tones. It follows that the model used here might well be a
useful representation of what happens in the presence of con-
tinuous background noise of unchanging level.

The remainder of the article is structured as follows. In
Sec. II, the computer model is described and it is informally
demonstrated that efferent suppression of the BM response
leads to an improved representation of speech in noise. An
analysis is then presented which concludes that the beneficial
effects of efferent suppression can largely be explained in
terms of release from adaptation. After a description of the
ASR system and speech corpus in Sec. III, experiments are
presented in Secs. IV-VI that quantify the speech intelligi-
bility gain associated with efferent processing, and the extent
to which this depends on the noise level and the speech level.

Il. THE COMPUTER MODEL
A. Model description

The computer model is shown schematically in Fig. 1,
and consists of two main stages (delineated in the figure by
gray boxes). The first stage is a model of peripheral auditory
processing, which takes a digitally sampled mixture of
speech and noise as its input and produces a simulation of
action potential generation in the AN. The second stage is an
ASR system that uses statistical word models to decode the
AN firing pattern into its corresponding word sequence.

The computer model of the auditory periphery consists
of a cascade of modules representing the resonances of the
outer/middle ear, the response of the basilar membrane, cou-
pling by inner hair cell stereocilia, the inner hair cell receptor
potential, calcium dynamics, and transmitter release and ad-
aptation at the inner hair cell auditory-nerve synapse. The
final stage of the model produces a probabilistic representa-
tion of firing rate in the AN. Detailed discussions regarding
the implementation and evaluation of each of these stages
can be found in Meddis et al., 2001; Lopez-Poveda and
Meddis, 2001; Sumner et al., 2002; Sumner et al., 2003a,
2003b; Meddis, 2006.

The model of the basilar membrane used here is a modi-
fication of the dual resonance nonlinear (DRNL) filterbank
proposed by Ferry and Meddis (2007) (see also Meddis
et al., 2001). The DRNL receives its input (stapes velocity)
from a model of the outer/middle ear, and produces an output
(basilar membrane velocity) that drives a simulation of inner
hair cell function. A single DRNL filter is shown in Fig. 2.
The output of the DRNL is the sum of two signal pathways,
which represent linear and nonlinear components of the basi-
lar membrane response. Each pathway consists of a sequence
of bandpass (gammatone) and lowpass (Butterworth) filters.

The nonlinear path also contains a compressive nonlin-
earity, implemented by a “broken-stick” function that com-
presses the input signal (i.e., stapes velocity) when it exceeds
a threshold level." The nonlinear path also begins with an
attenuation stage, introduced by Ferry and Meddis (2007) to
model the effect of efferent suppression from the MOC. The
amount of attenuation is determined by the parameter ATT
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FIG. 1. Schematic of the computer model used for speech recognition ex-
periments. The first major component is a model of the auditory periphery,
which includes a stage representing efferent suppression from the MOC.
The input to the auditory model is a digitally sampled stimulus (a mixture of
speech and noise) and the output is the AN representation of the stimulus, in
terms of firing probability. The second major component is an ASR system
based on statistical word models. Data reduction is performed so that the AN
response is encoded by a time-series of small feature vectors. These features
are then decoded by an ASR system based on HMMs, producing a word
sequence that is scored against a reference transcription.

(in decibels). This model has been shown to be in good
agreement with physiological measurements of the basilar
membrane, auditory-nerve and CAP responses when the
value of ATT is chosen to be proportional to the amount of
MOC activity (Ferry and Meddis, 2007).

In the following simulations, the parameters of the
model differ from those used by Ferry and Meddis (2007).
Whereas their study modeled physiological data from the
guinea pig, our study addresses the representation of speech
in human hearing. The outer/middle ear stage of the model
was configured using data from Huber er al. (2001),
whereas the DRNL filterbank parameters were taken from
Lopez-Poveda and Meddis (2001). The parameters for sub-
sequent stages of the model were those given by Meddis
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FIG. 2. Schematic diagram of the DRNL filterbank, modified to include an “efferent attenuation” stage (adapted from Ferry and Meddis, 2007). The DRNL
consists of parallel linear and nonlinear signal paths, and the suppressive role of the MOC is modeled by inserting an attenuator at the start of the nonlinear
path. The degree of efferent activity is determined by tuning the parameter ATT; larger values of ATT correspond to greater suppression by the MOC. The
DRNL receives its input (stapes velocity) from a model of the outer/middle ear. Output from the DRNL (basilar membrane velocity) is subsequently processed
by a model of inner hair cell function to give a representation of auditory-nerve activity.

(2006). Guinan and Stankovic (1996, Fig. 1) showed six dif-
ferent types of rate/level functions with and without electri-
cal stimulation, all of which have been simulated in an ear-
lier publication (Ferry and Meddis, 2007). One of these was
chosen for the present study on the basis that it gave a good
representation of the speech in quiet but a poor representa-
tion of speech in noise. The model fiber had a low spontane-
ous rate (LSR), a threshold of 20 dB and a narrow dynamic
range saturating at 50 dB sound pressure level (SPL), and
simulated in all respects the fiber in their Fig. 1D. These
characteristics were obtained by setting the calcium clear-
ance time constant 7,=0.75X 107 s, as given in Table III of
Meddis, 2006 (see also Sumner et al., 2002, Table II).
Clearly, many different kinds of fibers or mixtures of them
could have been used. However, our main purpose was to
illustrate how the efferent system could benefit the recogni-
tion of speech in noise even when the dynamic range is re-
stricted.

To provide an auditory time-frequency representation of
the noisy speech stimuli, 30 frequency channels were used
with best frequencies (BFs) distributed between 100 and
4500 Hz on a logarithmic scale. A detailed list of model
parameters can be found in Appendix A of Ferry (2008). The
model was implemented in the MATLAB programming lan-
guage: the source code is available from the authors on re-
quest.

In the second stage of the computer model, shown in
Fig. 1, the simulated AN firing patterns provide the input to
an automatic speech recognizer. The recognizer is a conven-
tional statistical speech recognition system in which whole
words are modeled by hidden Markov models (see, for ex-
ample, Gales and Young, 2008). To provide a suitable input
to the recognizer, the AN firing patterns are encoded as a
sequence of feature vectors, each of which describes the
spectral shape of the AN response at a certain point in time.
Details of the encoding strategy and recognizer architecture
are given in Sec. III B.

B. Analysis

Figure 3 shows the output of the peripheral auditory
model in the form of an “auditory spectrogram,” obtained by
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integrating overlapping 25 ms Hann-windowed segments of
the simulated AN firing probability within each frequency
channel at intervals of 10 ms. The grayscale value corre-
sponds to firing rate (darker tones indicate higher firing rate).
Panel (a) of the figure shows the auditory spectrogram for the
utterance “two eight four one” spoken by a male talker and
presented at a level of 60 dB SPL. Acoustic-phonetic fea-
tures that are known to be important for speech intelligibility
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FIG. 3. Simulated auditory-nerve firing rate representations (“auditory spec-
trograms”) for the utterance “two eight four one” spoken by a male talker.
Darker regions represent higher firing rate, and the level of the speech is
60 dB SPL in all panels. (a) Clean speech with no efferent activity. (b)
Speech with pink noise added at a level of 50 dB SPL (giving a signal-to-
noise ratio of 10 dB), with no efferent activity. (c) As in panel (b), but with
an efferent activity of 15 dB applied to the model. Efferent suppression
reduces the masking effect of the noise. For clarity, the first 1 s of the
auditory-nerve response has been omitted from the display; the speech was
preceded by 1 s of silence in panel (a) and 1 s of noise in panels (b) and (c).
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FIG. 4. Output from major stages of the auditory model, for the utterance “two eight four one” presented in pink noise. The sound levels of the speech and
noise were 60 and 50 dB SPL, respectively, giving a signal-to-noise ratio of 10 dB. The response to 1 s of noise preceding the speech has been omitted from
each figure. (a) No efferent attenuation (ATT=0 dB). (b) Simulated MOC stimulation giving an efferent attenuation of 15 dB (ATT=15 dB). From top to
bottom, the plots in (a) and (b) show basilar membrane displacement, cilia displacement, IHC receptor potential, IHC vesicle release probability, and
auditory-nerve firing probability. To improve the quality of the grayscale display, the basilar membrane displacement and IHC stereocilia displacement are
full-wave rectified, and different scales are used in the left and right panels. Note that the auditory-nerve firing probability is higher in panel (b), because

efferent attenuation reduces the adaptation caused by the preceding noise.

(e.g., formant transitions, release bursts, and frication) are
well represented. However, panel (b) shows that much of this
structure is lost when pink noise with a level of 50 dB SPL is
added to the utterance (corresponding to a SNR of 10 dB).
Weak time-frequency structure is masked by the noise, and
high-intensity parts of the signal now drive the simulated
auditory-nerve fibers close to their saturated firing rate. Panel
(c) shows that the masking effect of the noise can be partially
reversed by efferent suppression of the basilar membrane
response. Here, efferent activity was simulated by setting
ATT=15 dB, which reduces the gain in the nonlinear path of
the DRNL by 15 dB (this amount of attenuation was found
to be optimal for a speech level of 60 dB SPL and noise level
of 50 dB SPL, as described in Sec. V). Note that the speech
was preceded by 1 s of silence in panel (a), and 1 s of noise
in panels (b) and (c); for clarity, the first 1 s of the auditory-
nerve response has been omitted from the display.

Further insight into the effect of efferent activity can be
gained by considering the representation of noisy speech in
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each stage of the auditory periphery model. Figure 4 shows
the output from each stage of processing for the same mix-
ture of speech and noise used in Fig. 3, for cases in which (a)
no efferent attenuation is applied and (b) the efferent attenu-
ation is 15 dB. In each case, the speech was preceded by 1 s
of noise (which is not shown in the display). At stages of the
model up to the inner hair cell (IHC) receptor potential, the
effect of efferent activity resembles scaling by a constant
factor (although constant scaling is not specifically expected
due to the effect of BM compression). However, efferent
activity has a more complex effect at the stage of the IHC
vesicle release probability and beyond. Vesicle release due to
the noise is suppressed, reducing adaptation and allowing the
speech regions to elicit a larger vesicle release. This is re-
flected in the AN response, which shows a greater probabil-
ity of firing and an increased dynamic range. The “unmask-
ing” of noisy speech by efferent suppression can therefore be
explained in terms of release from adaptation.

An alternative way of understanding this effect is to con-
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FIG. 5. Rate-level functions for a simulated auditory-nerve fiber with a best
frequency of 1 kHz and a low spontaneous rate. The stimulus was a pure
tone presented at BF with a duration of 100 ms and onset/offset ramps of
5 ms. Firing rate was averaged over the last 50 ms of the stimulus. Condi-
tions are shown in which no efferent attenuation was applied (ATT
=0 dB), and in which MOC stimulation was modeled by applying efferent
attenuations of 10 and 20 dB (ATT=10, 20 dB). The rate-intensity curve
shifts to the right as the amount of MOC stimulation increases.

sider the change in the rate-level function of a simulated
auditory-nerve fiber when efferent activity is applied. Figure
5 shows a rate-level function generated by presenting brief
(100 ms) pure tones to a simulated auditory-nerve fiber with
a BF of 1 kHz. The frequency of the tone was set to the BF
of the simulated fiber, and the firing rate was measured over
the last 50 ms of each stimulus. The rate-level function has a
typical sigmoidal shape, which progressively shifts to the
right when increasing amounts of efferent attenuation are
applied (conditions for ATT=10 dB and ATT=20 dB are
shown in the figure). When speech is presented in a less
intense noise background (i.e., at a positive SNR), the effect
of such a shift in the rate-level function will be to reduce the
AN response to the noise, since the lower-level noise will be
relegated to the toe of the curve. Likewise, a shift in the
rate-level function moves high-energy regions of the speech
and noise mixture from the shoulder of the rate-level curve
back to its linear portion. This reduces saturation and restores
the dynamic range of the fiber. Note that the amount of un-
masking produced by such a mechanism will depend on the
level of the speech; this point is addressed later (Sec. VI).

lll. AUTOMATIC SPEECH RECOGNIZER

The above discussion suggests that speech intelligibility
in background noise should be improved by efferent suppres-
sion and raises the question of how the amount of unmasking
is related to the speech level and noise level. The remainder
of the paper investigates these issues by using the auditory
model as the front-end processor for an ASR system. The
speech and noise corpus and recognizer architecture are now
described.

A. Corpus

Speech material for the following experiments was
drawn from the Aurora 2.0 corpus (Pearce and Hirsch, 2000),
which consists of sequences of between one and seven digits
(“oh,” “zero,” and “one” to “nine”) spoken by male and fe-
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male talkers. Three sets of utterances were used. The recog-
nizer was trained on the “clean” training set, which consists
of 8440 utterances. For testing the recognizer, 1001 utter-
ances from the “cleanl” section of Aurora test set A were
used. In addition, a small development set of 200 utterances
drawn from the “clean2” section of test set A was used to
tune the auditory model and ASR system. The training, test-
ing, and development sets were completely independent, and
each contained an approximately equal number of recordings
from male and female talkers.

The Aurora speech material was modified in two re-
spects to suit the experiments described here. First, the neu-
romechanical transduction stage of the auditory model in-
volves numerical integration that must be performed at a
high sample rate. Accordingly, all utterances were upsampled
to a rate of 44.1 kHz (from the Aurora sample rate of
20 kHz) using the MATLAB resample function. Second, all
utterances were scaled to the same root-mean-square level
(60 dB SPL) in order to minimize changes in the spectral
representation obtained from the (nonlinear) auditory model
due to variations in sound level.

Noisy speech was generated by adding pink noise to the
test utterances at a range of SNRs between 200 dB (clean)
and 0 dB. Broadband noise was employed because it is
known to be a particularly effective speech masker (e.g.,
Miller, 1947). The pink noise was band-passed between
100 Hz and 10 kHz in order to ensure that noise energy
above the Nyquist frequency of the Aurora speech signals
did not influence the SNR. Prior to adding the noise, 1 s of
silence was appended to the start of each utterance; this al-
lowed the auditory model to adapt before the onset of the
speech. The corresponding second of simulated auditory-
nerve response was removed before speech recognition.

B. Automatic speech recognizer

Speech recognition was performed by a conventional
continuous-density hidden Markov model (HMM) system
(e.g., see Gales and Young, 2008). Such systems require the
acoustic input to be encoded as a sequence of feature vectors,
each of which (a “frame”) encodes the shape of the speech
spectrum over a brief time window. The goal of the recog-
nizer is to find the most likely word sequence that corre-
sponds to an observed sequence of feature vectors.

The recognizer represents speech units (e.g., words) by
trained HMMs that model the speech as a sequence of sta-
tionary states. Each state is characterized by a multivariate
Gaussian mixture distribution over the observed acoustic fea-
ture vectors. During training, the Baum—Welch algorithm is
used to learn the parameters of the HMMs from a large cor-
pus of annotated speech. During testing, the VITERBI algo-
rithm is applied to find the most likely sequence of HMM
states (and hence words) given an observed sequence of fea-
ture vectors and the trained HMMs. For an accessible review
of the Baum—Welch and Viterbi algorithms, see Rabiner,
1989. Here, a modified version of the Aurora baseline recog-
nizer was used (Pearce and Hirsch, 2000), in which observa-
tions were modeled by Gaussian mixtures with diagonal co-
variance. Gaussian mixtures with seven components were
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used, as these were found to give good performance on the
development set.

It was necessary to perform some data reduction in the
output of the auditory model in order to obtain feature vec-
tors that were suited to the HMM speech recognizer. As pre-
viously shown in Fig. 3, the auditory-nerve firing probability
emanating from each channel of the model was integrated
over a 25 ms Hann window at intervals of 10 ms (i.e., suc-
cessive windows overlapped by 60%), giving a temporal res-
olution that is typical for ASR systems. However, the result-
ing spectral features are not well modeled by a small number
of Gaussian mixture components with diagonal covariance,
because features from adjacent frequency channels are
highly correlated. Accordingly, further data reduction was
performed by applying a discrete cosine transform (DCT) to
each frame, giving feature vectors that contain approxi-
mately independent components (Oppenheim et al., 1999).
The first 14 DCT coefficients were retained. To improve per-
formance, time derivatives of the static DCT coefficients
were also included; specifically, first-order and second-order
regression coefficients (referred to as “deltas” and “accelera-
tions”) were appended to each vector, to give a total of 42
features per frame. A similar approach has been used in nu-
merous other studies that employ auditory models as acous-
tic front-end processors for ASR systems (e.g., Jankowski
et al., 1995; Holmberg et al., 2007).

HMMs with 16 emitting states were trained for each
word in the Aurora corpus (i.e., the digits zero, oh, and one
to nine). Models were also trained for silence (three states)
and short pauses (one state). To reduce the number of inser-
tion errors, a simple grammar was used to constrain all hy-
potheses so that they started and ended with the silence
model. The hidden Markov model toolkit (HTK) was used to
train the models and perform decoding (Young et al., 2009).
The ASR system was always trained on clean speech (i.e.,
without added noise) and no efferent attenuation was applied
during training (ATT=0 dB).

Word sequences produced by the recognizer were scored
using the HTK HResults tool, which compares the transcript
produced by the recognizer with a hand-labeled reference
transcription. Recognition accuracy is computed as (H
—I)/NX100%, where H is the number of correct words
(“hits”™), I is the number of incorrectly inserted words (“in-
sertions”), and N is the total number of words in the refer-
ence transcription.

IV. EXPERIMENT I: EFFECT OF EFFERENT ACTIVITY

It is well known from experiments with human listeners
that speech intelligibility declines in the presence of broad-
band noise (e.g., Miller, 1947). The same is true of ASR
systems, and hence the performance of an ASR system in
noise can be taken as indicative of human speech intelligi-
bility in noise. The comparison is only a qualitative one,
however, because the error rate of an ASR system is typically
an order of magnitude greater than that of a human listener
under the same conditions (Lippmann, 1997). Additionally,
humans and ASR systems differ in the rate at which their
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FIG. 6. Speech recognition accuracy (in percent) as a function of noise
level, for conditions in which no efferent attenuation is applied, when 10 dB
of efferent attenuation is applied, and when the “optimal” efferent attenua-
tion for each noise level is used. Each point represents an average over the
test set of 1001 utterances. Speech stimuli were presented at a sound level of
60 dB SPL during training and testing. Efferent activity gives a substantial
performance gain in some noisy conditions. Note, however, that efferent
activity degrades performance in the clean condition, suggesting that less
activity is required in clean conditions and more in noisy conditions; this
can be achieved by applying an optimal attenuation that is proportional to
the noise level.

performance falls in the presence of increasing amounts of
noise; ASR systems degrade much earlier, and much quicker,
as the SNR worsens.

Noise is detrimental to ASR performance because it in-
troduces a discrepancy between the training and testing con-
ditions (i.e., there is a mismatch between the statistical mod-
els that are derived from clean speech during training, and
the noisy speech features that are encountered during test-
ing). A first question is whether efferent activity is able to
compensate for this mismatch, by providing a representation
of noisy speech that is closer to the ideal clean-speech mod-
els.

Figure 6 shows speech recognition accuracy for a range
of noise levels, obtained from the auditory model and ASR
system as described above. When efferent activity is disabled
by setting ATT=0 dB (recall Fig. 2), speech recognition ac-
curacy is high (97.5%) for clean speech but declines sharply
with increasing noise level. For noise levels between 40 and
55 dB SPL, a substantial improvement in recognition accu-
racy is obtained by introducing an efferent activity of 10 dB
(i.e., ATT=10 dB). This result confirms that for a speech
level of 60 dB SPL, efferent suppression serves to reduce the
effects of the noise, yielding acoustic features that more
closely resemble those of clean speech. Experiment III (Sec.
VI) investigates whether this conclusion holds across a range
of different speech levels.

A notable feature of Fig. 6 is that recognition accuracy
of clean speech declines (to 92.4%) when an efferent attenu-
ation of 10 dB is introduced. This suggests that efferent ac-
tivity is undesirable when noise is absent, because it warps
the auditory representation of the speech away from the
clean-speech models. More generally, this raises the issue of
whether there is an “optimal” amount of efferent activity that
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i.e., it is the efferent attenuation that maximizes speech recognition accuracy
for the given noise level. Speech stimuli were presented at a sound level of
60 dB SPL during training and testing of the speech recognizer.

maximizes speech recognition accuracy, and whether this de-
pends on the noise level. Similarly, an efferent attenuation of
10 dB gives little performance gain when the noise level is
60 dB SPL, and it is possible that recognition accuracy could
be improved in this condition by increasing the amount of
efferent activity. These issues are addressed in the following
experiment.

V. EXPERIMENT II: EFFECT OF NOISE LEVEL

In this experiment, the relationship between noise level,
level of efferent activity, and speech recognition accuracy
was systematically investigated. Speech recognition accu-
racy was obtained for different configurations of the auditory
model in which the efferent attenuation was set to a value
between 0 and 20 dB in steps of 1 dB. The upper bound on
the efferent activity was set in accordance with the physi-
ological study of Liberman and Guinan (1998) in the cat,
which found that the maximum suppression obtained with
sound-evoked activity was approximately 20 dB. For each
configuration of the model, speech recognition accuracy was
evaluated in a range of noise conditions (clean speech, and
speech with pink noise added at levels between 40 and 60 dB
SPL).

Figure 7(a) shows the results from this experiment. For
clean speech, recognition accuracy is highest when there is
no efferent attenuation (ATT=0 dB). In the remaining con-
ditions, the curve relating efferent activity to speech recog-
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nition accuracy generally shows a broad peak that indicates
the optimal efferent attenuation for that noise level. Figure
7(b) plots these optimal efferent attenuation values against
noise level. The results suggest that the best efferent attenu-
ation is proportional to the noise level (i.e., if the level of the
speech is held constant and noise is added, higher noise lev-
els require more efferent activity).

Speech recognition accuracy is plotted in Fig. 6 (open
squares) when the optimal efferent attenuation is used for
each noise level. The resulting performance curve is indica-
tive of the speech recognition accuracy achievable by a sys-
tem that adjusts the efferent activity to its optimum value
based on an assessment of the noise level. However, the
optimal efferent attenuation is likely to depend on speech
level (and overall sound level) in addition to the noise level.
These factors are considered in the next experiment.

VI. EXPERIMENT Ill: EFFECT OF SPEECH LEVEL

In the two previous experiments, the speech was pre-
sented at a sound level of 60 dB SPL during training and
testing of the ASR system. A further question is whether the
benefits of efferent activity observed at a speech level of
60 dB SPL are also apparent at other speech levels. To ad-
dress this, the ASR system was trained on clean speech and
tested on mixtures of speech and pink noise for which the
level of the speech was varied between 40 and 80 dB SPL in
steps of 10 dB.

It should be noted that the aim of this experiment was to
investigate the likely benefit of efferent activity at different
sound levels, rather than to determine the robustness of the
ASR system to discrepancies between the level of the speech
in the training set and test set. Because the auditory model is
nonlinear, it provides the recognizer with acoustic features
that are level-dependent; hence, recognizer performance de-
clines if there is a difference in speech level between the
training and test sets. To avoid this confound, the sound level
of the speech was always held the same during training and
testing of the recognizer.

The results from this experiment are shown in Fig. 8.
Speech recognition accuracy was determined using the opti-
mum value of the efferent attenuation for each noise level,
which was obtained using the procedure described in Sec. V.
Substantial benefits of efferent activity are obtained at speech
levels between 40 and 70 dB SPL. However, speech recog-
nition accuracy is poor when the speech is presented at a
level of 80 dB SPL, even with efferent activity. This can be
explained by the rate-level function shown in Fig. 5. At a
sound level of 80 dB SPL, the simulated auditory-nerve fi-
bers are driven close to their saturated firing rate, even when
a substantial efferent attenuation is applied. As a result, the
efferent suppression does not result in a reduced firing rate
during the noise and no reduction in adaptation is achieved.
Conversely, speech recognition accuracy improves at lower
sound levels, because the simulated auditory-nerve fibers re-
spond in the linear portion of their rate-level functions. It
should be noted, however, that the model does not currently
include a simulation of the acoustic reflex, which would be
active at sound levels above 75 dB SPL (Liberman and
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FIG. 8. Effect of speech level and noise level on word recognition accuracy.
The plots show performance on the 1001-word test set when the recognizer
was trained and tested on speech presented at sound levels between 40 and
80 dB SPL. The figures show performance without efferent activity and
when the best efferent attenuation is used. The best efferent attenuation was
determined separately for each experimental condition (i.e., for each com-
bination of speech level and noise level).

Guinan, 1998). If present in the model, the acoustic reflex
would reduce the effective level of the 80 dB SPL stimulus,
leading to reduced adaptation and improved speech recogni-
tion accuracy.

Figure 9 illustrates the effect of speech level and noise
level on best efferent attenuation. For speech levels of 40,
50, and 60 dB SPL, there is generally a monotonic increase
in best efferent attenuation as the noise level is increased.
Additionally, the best efferent attenuation rises more steeply
with increasing noise level as the speech level is increased,
indicating that the best efferent attenuation is also influenced
by overall sound level. For speech levels of 70 and 80 dB
SPL, the best efferent attenuation increases with increasing
noise level only up to the point where the speech recognition
performance degrades to chance level (approximately 9%;
see Fig. 8). Beyond this point (indicated by a vertical dotted
line in Fig. 9), efferent attenuation is unable to counteract the
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FIG. 9. Effect of speech level and noise level on best efferent attenuation.
The plots show the best efferent attenuation for speech levels between 40
and 80 dB SPL. The best efferent attenuation was determined separately for
each experimental condition (i.e., for each combination of speech level and
noise level). At speech levels of 60 dB SPL and below, the best efferent
attenuation generally increases with increasing noise level. For speech levels
above 60 dB SPL, best efferent attenuation generally increases with increas-
ing noise level until the performance of the recognizer falls to chance level.
The point at which speech recognition degrades to chance performance is
marked by a vertical dotted line in the panels for speech levels of 70 and
80 dB SPL.

saturation caused by the high overall sound level, and many
different values of ATT will give the same (poor) speech
recognition performance.

VIl. DISCUSSION

The aim of this modeling study was to investigate the
potential role of the auditory efferent system in improving
the intelligibility of speech that is masked by broadband
noise. By using the auditory model as the front-end for an
ASR system, it has been shown that speech recognition ac-
curacy is improved by attenuating the response of the simu-
lated basilar membrane when noise is present. Efferent activ-
ity has the effect of shifting the rate-level curve of the model
auditory-nerve fibers to the right, which improves the dy-
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namic range of the firing rate response and provides a release
from adaptation. It was found that the optimum efferent at-
tenuation was proportional to the noise level in most experi-
mental conditions. This finding is compatible with a model in
which the efferent system adjusts itself to the background
noise level in order to prevent excessive adaptation and
therefore optimizes speech recognition. Like the previous
studies of Ghitza and colleagues (Ghitza et al., 2007; Ghitza,
2007), our results therefore support the notion that the audi-
tory efferent system contributes to the robustness of speech
perception in adverse acoustic conditions.

The model suppresses the auditory response to broad-
band noise, providing a better spectro-temporal representa-
tion of speech components. Figure 6 shows that the effect of
efferent activity in the model declines at high noise levels,
and is marginal when the SNR is 0 dB. The ability of human
listeners to recognize speech in noise is better than that of
our ASR system. However, human speech intelligibility is
poor below a SNR of 0 dB when the speech is masked by
broadband noise (word intelligibility less than 50%; see
Miller, 1947). We hypothesize that negative SNRs are par-
ticularly difficult for human listeners because the efferent
system is less effective in unmasking the speech under such
conditions. Although efferent activity will still reduce adap-
tation caused by noise when the speech level lies below the
noise level, the model simulation suggests that the benefit
will be small.

A limitation of the current study is that it only considers
a pink noise masking sound. Human listeners are able to
exploit temporal fluctuations in the envelope of a masker in
order to “listen in the dips” or “glimpse” the speech (Miller
and Licklider, 1950; Cooke, 2006). The effect of efferent
suppression on “glimpsing” mechanisms remains an interest-
ing issue for further study. Without efferent suppression, the
availability of glimpses may be reduced because the periph-
eral auditory system is too adapted to respond during dips in
the temporal envelope of the background noise. Listeners
with impaired hearing have a reduced ability to listen in the
dips (e.g., Hopkins er al., 2008). Hence, a deficiency in ef-
ferent suppression (caused by outer hair cell damage or by a
deficiency in the efferent system itself) is one factor that
could contribute to the difficulty that hearing-impaired listen-
ers experience when listening to speech in fluctuating back-
ground noise.

In the current model, the same level of efferent activity
is applied at all frequencies. In fact, physiological data from
the cat suggest that efferent suppression is greatest at fre-
quencies above 2 kHz (Guinan and Gifford, 1988; Liberman
and Guinan, 1998). However, the physiological data also
show that efferent suppression is effective over a wide fre-
quency range; for low spontaneous rate fibers (as used in the
computer model), Fig. 4 of Guinan and Gifford (1988) indi-
cates that the maximum efferent attenuation is at least 12 dB
over the range of best frequencies used in the computer
model (i.e., between 100 and 4500 Hz). The current model is
therefore a reasonable approximation, although there is
scope for more detailed modeling of the frequency-
dependent effects of efferent activity.
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Conventional front-end processors for ASR provide
acoustic features that encode the spectral shape of speech but
are largely independent of sound level. Typical approaches
are cepstral mean subtraction (Liu et al., 1993) and RASTA
filtering (Hermansky and Morgan, 1994), both of which aim
to remove slowly varying channel characteristics. Without
the efferent attenuation component, the DRNL filterbank ex-
hibits level-dependent behavior that complicates its use as a
front-end for ASR; in particular, the best frequency associ-
ated with a filterbank channel is subjected to change at high
sound levels, and the filter bandwidths broaden (Meddis
et al., 2001). Efferent activity moderates this behavior to
some degree and extends the effective dynamic range of the
auditory model (as would a simulation of the acoustic reflex,
which is currently absent from the model). However, the
results of Experiment IIT (Fig. 8) show that the performance
of the model is still level-dependent, due to the saturating
rate-level function of the simulated auditory-nerve fibers. For
this reason, the speech recognition accuracy obtained with
the auditory model is below that typically obtained with
state-of-the-art signal processing front-ends (e.g., Cui and
Alwan, 2005).

A related issue is the use of low spontaneous rate (LSR)
auditory-nerve fibers in the computer model. In the simula-
tions reported here, the calcium clearance time constant 7c,
(Meddis, 2006; Sumner er al., 2002) was configured to give
fibers with a low spontaneous rate. The choice of a LSR fiber
type to illustrate the consequences of efferent suppression
was determined by the availability of relevant physiological
data showing how efferent activity affects a fiber’s response.
Guinan and Stankovic (1996) showed the effect of efferent
suppression on six different fibers, and all of these showed
low spontaneous rates. All six fibers were simulated in the
modeling study of Ferry and Meddis (2007). By choosing
one of these fibers, it was possible to assume some physi-
ological realism. Unfortunately, the most common type of
fiber in small mammals shows high spontaneous rates. To
compensate for this discrepancy, it was decided to use the
fiber with a low threshold (20 dB SPL) and the narrowest
dynamic range (20 dB) found in Fig. 1D of Guinan and
Stankovich’s (1996) report. In these two respects, at least,
the fiber used in this study was similar to typical HSR fibers.
In contrast, most LSR fibers have high thresholds and wide
dynamic ranges.

The relative contribution of low and high spontaneous
fiber types to the representation of speech sounds is of con-
siderable interest but beyond the scope of this study (see,
however, Winslow et al., 1987; Sachs et al., 2006). Our pri-
mary purpose here was to demonstrate improvements in
speech-in-noise performance when efferent suppression is
added to the model. This demonstration is particularly im-
portant with respect to fibers with narrow dynamic ranges. At
first sight, auditory-nerve fibers that saturate at levels above
40 dB SPL would appear to be ill-suited to represent speech
presented at levels of 60 dB SPL and above, especially when
presented against a background of noise at similar levels.
The modeling study described above has shown that this
apparently unpromising approach can nevertheless give use-
ful representations of speech in quiet up to 80 dB SPL (Fig.
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8). Moreover, the poor performance of the system in back-
ground noise is considerably ameliorated when efferent sup-
pression is applied at strengths related to the intensity of the
noise.

VIIl. CONCLUSIONS

It has been shown that efferent suppression improves the
intelligibility of speech masked by broadband noise in a
model that combines auditory efferent processing with an
ASR system. Optimum speech intelligibility is achieved in
the model using a level of efferent attenuation that is propor-
tional to the noise level, other than when the noise is so
intense that the recognizer degrades to chance performance.
Unmasking due to efferent suppression occurs across a wide
range of sound levels. However, the amount of unmasking
depends both on the speech level and the noise level.
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"The broken-stick nonlinearity is defined by y(1)
=sign[x(r)] min[al|x(z)|,b]x()|], where a, b, and ¢ are parameters and x(r)
and y(r) represent the input and output signals, respectively. For details of
the parameter values see Lopez-Poveda and Meddis (2001).

The filtering of the human outer/middle ear is modeled by passing the
acoustic signal through three first-order linear bandpass Butterworth filters
arranged in series. The first filter has lower and upper cutoff frequencies of
1900 and 4200 Hz. The second and third filters have lower/upper cutoff
frequencies of 4500/6300 and 8000/12 000 Hz, respectively.

°In practice, the efferent system is likely to be activated by speech alone,
and hence it would be appropriate to apply some degree of efferent attenu-
ation during training of the recognizer with clean speech. In this study,
efferent activity was suppressed during training of the recognizer in order
to simplify our study of the benefit of efferent activity during speech
recognition.
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